Computing autocatalytic sets to unravel inconsistencies in metabolic network reconstructions
نویسندگان
چکیده
MOTIVATION Genome-scale metabolic network reconstructions have been established as a powerful tool for the prediction of cellular phenotypes and metabolic capabilities of organisms. In recent years, the number of network reconstructions has been constantly increasing, mostly because of the availability of novel (semi-)automated procedures, which enabled the reconstruction of metabolic models based on individual genomes and their annotation. The resulting models are widely used in numerous applications. However, the accuracy and predictive power of network reconstructions are commonly limited by inherent inconsistencies and gaps. RESULTS Here we present a novel method to validate metabolic network reconstructions based on the concept of autocatalytic sets. Autocatalytic sets correspond to collections of metabolites that, besides enzymes and a growth medium, are required to produce all biomass components in a metabolic model. These autocatalytic sets are well-conserved across all domains of life, and their identification in specific genome-scale reconstructions allows us to draw conclusions about potential inconsistencies in these models. The method is capable of detecting inconsistencies, which are neglected by other gap-finding methods. We tested our method on the Model SEED, which is the largest repository for automatically generated genome-scale network reconstructions. In this way, we were able to identify a significant number of missing pathways in several of these reconstructions. Hence, the method we report represents a powerful tool to identify inconsistencies in large-scale metabolic networks. AVAILABILITY AND IMPLEMENTATION The method is available as source code on http://users.minet.uni-jena.de/∼m3kach/ASBIG/ASBIG.zip. CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
منابع مشابه
Consistency Analysis of Genome-Scale Models of Bacterial Metabolism: A Metamodel Approach
Genome-scale metabolic models usually contain inconsistencies that manifest as blocked reactions and gap metabolites. With the purpose to detect recurrent inconsistencies in metabolic models, a large-scale analysis was performed using a previously published dataset of 130 genome-scale models. The results showed that a large number of reactions (~22%) are blocked in all the models where they are...
متن کاملTowards improved genome-scale metabolic network reconstructions: unification, transcript specificity and beyond
Genome-scale metabolic network reconstructions provide a basis for the investigation of the metabolic properties of an organism. There are reconstructions available for multiple organisms, from prokaryotes to higher organisms and methods for the analysis of a reconstruction. One example is the use of flux balance analysis to improve the yields of a target chemical, which has been applied succes...
متن کاملAutocatalytic sets in E. coli metabolism
BACKGROUND A central unsolved problem in early evolution concerns self-organization towards higher complexity in chemical reaction networks. In theory, autocatalytic sets have useful properties to help model such transitions. Autocatalytic sets are chemical reaction systems in which molecules belonging to the set catalyze the synthesis of other members of the set. Given an external supply of st...
متن کاملOn RAF Sets and Autocatalytic Cycles in Random Reaction Networks
The emergence of autocatalytic sets of molecules seems to have played an important role in the origin of life context. Although the possibility to reproduce this emergence in laboratory has received considerable attention, this is still far from being achieved. In order to unravel some key properties enabling the emergence of structures potentially able to sustain their own existence and growth...
متن کاملGrowMatch: An Automated Method for Reconciling In Silico/In Vivo Growth Predictions
Genome-scale metabolic reconstructions are typically validated by comparing in silico growth predictions across different mutants utilizing different carbon sources with in vivo growth data. This comparison results in two types of model-prediction inconsistencies; either the model predicts growth when no growth is observed in the experiment (GNG inconsistencies) or the model predicts no growth ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 31 3 شماره
صفحات -
تاریخ انتشار 2015